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INTRODUCTION

The objective of this study is to develop a two- and three-
dimensional comprehensive spray combustion computer simulation
code to study the compleXx physical processes involved in a
liquid-fueled combustor. Efforts of this study in the last six
months include: ‘1) implementing the Stochastic/two-equation
model for turbulent droplet dispersion calculation; (2) testing
the transient particle tracking methodology in a benchmark flow
field; (3) upgrading and test the two-equation k-E model for the
ARICC code. In the following, progresses in these studies will
be briefly described.

(1) Implementations of the Stochastic Lagrangian particle
tracking model into the MAST code have been completed. We
utilized the operaztor-splitting technique such that the two-way
coupling between the two phases 1is accounted for in a multi-
corrector procedure. This operator-splitting technique eliminate
the global iteration processes used in the conventional
SIMPL/PSIC (particle source in cell) method. This method is time-
accurate, and has been shown to very efficient for transient
spray calculations.

(2) Testing of the above mentioned two-phase methodology
for single injector spray has been carried out. The testing
conditions for the Horiyasu’s experiment setups are shown in
Table 1. At the injection exit, the distribution of droplet
sizes is modeled by a X-square function. Particle/droplet
interaction was modeled by random sampling from assumed

probability distribution of flow turbulence. For the k-E model



used, this probability distribution is Gaussian. Figure 1 and 2
show the penetration of spray at different chamber pressures.
comparisons of the computed spray penetrations with experimental
data are shown in Figure 3. The agreement is excellent and shows
the time-accuracy capability of the current methodolgy. The
efficiency assessment of the MAST calculations is summarized in
Table 3. It can be seen that the MAST reduces CPU time by one
order-of-magnitude and very much particle-number insensitive.
The robustness of this methodology is demonstrated for this test
case. Further testings are underway for hollow-cone sprays.

(3) Turbulence model upgrade for ARICC and the testing of
the ARICC performance on penchmark turbulent flows have been
completed. Due to the explicit ALE-ICE method used in the ARICC
code, the inclusion of the k-E model highly reduced the time-step
for marching solutions. The efficiency of the ARICC code with
advanced turbulence models was seen to deteriorate significantly.
Detailed implementation and validation studies can be found in
Lee’s Master Thesis which is funded by this grant and is enclosed

as an appendix.
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TABLE 1

SINGLE-ORIFICE INJECTION PARAMETERS(Horiyasu)

Chamber Injection Gas Mass Sauter Mean Eddy

Gas Pressure Velocity Density Flow Radius(SMR) Viscosity

(ATM) (m/sec) (kg/m?>) (kg/sec) pm (m?/sec)

1 122.2 1.123 0.00726 5.0 7.1 x 107*

30 102.5 33.70 0.00609 5.0 5.0 x 10~*
Fuel: Diesel fuel oil, p, = 840 kg/m®

Ambient Gas: Nitrogen

Nozzle Diameter: 0.3 mm




TABLE 3

EFFICIENCY ASSESSMENT (CPU Time)

MAST-2D TEACH/PSIC
SINGLE-ORIFICE SPAR  Particle # Particle #
41 x 61 Grid 600 126.9 sec 800 1420 sec
300 Time Steps 1200 135.7 sec
HOLLOW CONE SPRAY 400 74.9 sec
31 x 31 Grids 800 934 sec
200 Time Steps 1000 88.3 sec
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ABSTRACT

The purpose of this study is to validate and further develop an existing Compu-
tational Fluid Dyr.amics code for simulating complex turbulent flows inside a liquid
rocket combustior. chamber. The ARICC (Advanced Rocket Injector/Combustor
Code) Code is simplified and validated against benchmark flow situations for lami-
nar and turbulent flows. The numerical method used in ARICC Code is re-examined
for incompressible flow calculations. For turbulent flows, both the subgrid and the
two equation k — € turbulence models are studied. Cases tested include idealized
Burger’s equation in complex geometries and boundaries, a laminar pipe flow, a high
Reynolds number turbulent flow, and a confined coaxial jet with recirculations. The
accuracy of the a:gorithm 1s examined by comparing the numerical results with the

analytical solutions as well as experimented data with different grid sizes.
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CHAPTER I INTRODUCTION

Combustion flows involving liquid propellants inside a liquid rocket engine rep-
resent one the most complicated engineering flow systems in operation. The com-
plexity stems from the existence of multiple zones with very different time and
length scales within the same physical domain (Figure 1.1). The zones are in close
proximity to each other and the processes are usually strongly coupled. In the
injection zone, for instance, the major physical characteristics include those of mul-
tiphase flows, recirculation, high shear stresses, and steep pressure gradient. The
multiphase flows -nvolved are : a multispecies gaseous phase, incompressible lig-
uid phase, and a »articulate droplet phase. The dominant processes are liquid jet
breakup and atoraization, droplet-gas interactions and fluid-wall interactions. A
short distance away from the injector, the characteristics of the flow become those
of steep concentration gradients around droplets, turbulent mixing and diffusion,
and dilute gas-liqnid suspension flow. The critical processes become those of droplet
transport, evaporation, and droplet heatup. Further downstream, the fuel/oxidizer
mixture begins to combust. The flow is now characterized by high heat fluxes, a rel-
atively large number of gaseous species, and temperature extremes that necessitate
the consideration of real gas properties. The key processes are kinetic and equilib-
rum chemical reactions and species diffusion. Finally, in the post-combustion or

1
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expansion zone, the fluid properties range from a “frozen” composition to near “dy-
namic equilibrium”. There is high velocity gradient near walls and at the nozzle.
The dominant prccesses of interest are transonic/supersonic flows and boundary
layer effects.

As shown in Figure 1.1, all zones are coupled with each other. The first three
zones in a typical rocket engine preburner, for example, the Space Shuttle Main
Engine (SSME), comprise a volume of only about 1-inch diameter by 2-inch length.
While different dominant processes can be identified in different zones, they are

intrinsically coupled to each other.

In 1985, a comprehensive model for the simulation of detailed three-phase
combustion flows inside combustion chamber was developed by Rocketdyne. The
Rocketdyne Code (ARICC) is developed from CONCHAS-SPRAY of LANL (Los
Alamos National Laboratory). The original CONCHAS-SPRAY code solves the
equations of tran:ient multicomponent chemically reactive fluid dynamics, together
with those for the dynamics of an evaporating liquid spray. With few exception.
reactive flow proolems of practical interest are far too complex to be solved ana-
lytically. Quantirative theoretical analyses therefore require the use of numerical
methods. CONCHAS-SPRAY is a time-marching code that solves finite difference
approximations {o the governing differential equations. The transient solution is
marched out in a sequence of finite time increments called cycles or time steps.
Values of the dependent variables on each cycle are calculated from those on the
previous cycle. CONCHAS-SPRAY is a two-dimensional code, which assumes

that the dependent variables depend on only two of the three spatial coordinates



because of symmet:y. The effects of turbulence are represented by a simple subgrid
scale (SGS) turbulence model, whose use is optional. The option is also provided
to calculate boundary layer drag and heat transfer from a modified turbulent law
of the wall. CONCHAS-SPRAY utilizes a partially implicit numerical scheme that
is a variant of the ICE method (Harlow and Amsden, 1968, 1971). Spatial differ-
ences are formed with respect to a generalized finite-difference mesh or grid, which
subdivide the region of interest into a number of small quadrilateral cells, or zones.
The corners of the cells are called the vertices. The position of the vertices may be
arbitrarily specified as function of time, thereby allowing a Lagrangian. Eulerian,
or mixed description. Since the locations of the vertices are arbitrary, the cells are
arbitrary quadrilaserals. This type of mesh is called an ALE (arbitrary Lagrangian-
Eulerian) mesh (Hirt, Amsden and Cook, 1974; Pracht 1975), and is particularly
useful for representing curved and/or moving boundary surfaces. Evaporating liquid
sprays are represented by a discrete- particle technique (Dukowicz 1980), in which

each computational particle represents a number of similar physical particles.

Simulation of gas phase and particle phase was completed in CONCHAS-
SPRAY. In ARICC code, the volume of fluid method was added to account for
dense spray (Figure 1.2). While the liquid phase is assumed to be incompressible
with a constant censity and temperature. The “pseudo-incompressible” treatment
was used in ARICC, the inclusion of limited compressibility made the liquid iter-
ation process much more stable and allowed much faster convergence (Liang et al.

1985).

The ARICC code is designed to simulate two-phase multi-species reacting flow



with spray droplets in either a two-dimensional or an axisymmetric with swirl con-
figuration. The code 1s real-time accurate. It accounts for all the important physical
processes involved in commonly encountered combustion devices either vigorously
or using empirical models. Radiation, which is not significant in the case of liquid
rocket combustion chambers, i1s not modeled (ARICC User’s Manual).

The Deardorf’s subgrid model is an algebraic model in which the “mixing
length” is prescribed by the local grid size. In the last two decades, the advances
of turbulence mod-ling has reach the point where reasonable good predictions of at
least the mean velicity fields can be made by some advanced models. The purpose
of this study is incorporate the so-called two equation kinetic energy (k)- energy
dissipation rate (¢) turbulence model into the ARICC code for better presentation
of turbulence field simulation. The k — € model accounts for the history effect,
as well as diffusion, sources of the characteristic velocity and length thus is more
capable of handling complex flows such as the ones encountered in typical liquid
engines. In the fcllowing chapters. numerical aspects of ALE-ICE schemes will be
described. Severa: benchmark testing cases for laminar as well as turbulent flows will
be performed to alidate the implementations and performances of the turbulence
models and the ALE-ICE scheme. Finally, conclusion and recommendations will be

made.
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CHAPTER II MATHEMATICAL MODELS

A. Governing Equations

quations in axisymmetric fluid flows are shown in cylindrical

The governing e

coordinate with x-y-8 coordinates and u-v-w velocities. The x direction is the axial

coordinates and the y direction is the radial coordinates.
For conservat:on of mass, the governing equation 1s

9 (2.1.a)

1.0 0
oy = — =0
3 T las v F Gl
For conservation of linear momentum of Newtonian fluid, the governing equa-

tions are given by

o, . Loy Oypw, _ Op 1,0 . 0 )
o, 10w oyew  9p 10 0
2
SN AR (2.2.)
y Y

The angular momentum equation, which determines the swirl velocity w, is

given by

0 0
[a(yzﬁo) + 'a—y(szyo)] (2.3)

|~

a 1.0 , 9, ~
at(ypw) + y[ax(y pwu) + 6y(y pwv)] =

For conservation of internal energy, the equation is given by

@ "3

2 o0+ 12 wotn) + Zapto) = ~El ) + 0l
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1o 2
ey ety (2.4)
oo vy
where
Ju 2
Trr — 2'— - V .
1257~ 3 u)]
u 2
rog = p[2— — z(V u)|
y 3
dv 2
Tyy = N{Q’a:’ - ‘3‘(\7 u)]
[ J w |
Tre = Tor Jy—1(—
6 6 } Uar y
J w
THy — 'yo /"[y;f)’];(; ]
Try = Tyr T H dy Or
and
< 0u+10( | 0u+v+0U
Tu= — 4+ ——{yr)=~-1T - T "
or yOy y Jr y Oy

for the energy equation. the heat flux 15

., oT
= —h{z7)

.]y = —I&—(gg)

where p is the density, p is the pressure. u is the velocity in axial direction, v 1S

the velocity in r¢ dial direction. T is the temperature. [ is the internal energy of the

fluid flow. p is the viscosity of the fluid and I is the thermal conductivity.

For hot gas-s. equation of state 1s described by the ideal gas law

p=pRT (2.5)



where R is the un-versal constant.

The precedins equations have been given in forms appropriate for laminar flows.
In order to treat ti rbulent flows. the equations must be suitably averaged. Ensemble
averages are used here. Whatever type of averaging process selected, instantaneous
dependent variab.es are separated into mean and fluctuating components. The
averaged equatior s are considerably simpler if the mean values are mass weighted
(the so-called Favre averaging procedure) for compressible turbulent flows.

In order to saow the turbulent motions and their interactions with the mean
motion more exp icitly, we follow a procedure due to Osborne Revnolds. Let us
apply this procecure to the flow of a incompressible fluid with constant VISCOSItY.

constant density, isothermal flow. In this approach the instantaneous quantities are

decomposed into mean and fluctuating parts. le..
U, = U, + “,i
p=P+p

After insertion ir.to equations (2.1) and (2.2) the following time averaged equations

result

)(?.Ui +U.?£i)—__?£+_g_[ ?[_7,+_(9_Ci
f Oz Oz, a Jr, or;

r 3, ) — pubu] (2.6)

J

For an incompressible fluid and constant viscosity, we come to the conclusion that

the turbulence terms puju; can be interpreted as stresses on an element of the fluid
in addition to tl.e stresses determined by the pressure P and the viscous stresses.

Because Revnolcs was the first to give the equation for turbulent flow. the turbulent

stresses puju’; are often called Reynolds stresses.
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In comparing the turbulence stresses in the equations of motion with the cor-
responding stresses caused bv viscositv ofects it is temnting to assume that the
turbulence stresses act like the viscous stresses. that 1s. that they are directly pro-

portional to the v-locity gradient. Thus

oU, AU,

= — iy — + — 2.
M(a:rj + 9z, ) (2.7)

This assumption 1-as made by Boussinesq, who introduced the concept of an “appar-
ent.” or “turbulence,” or “eddy” viscosity p. According to Boussinesq's concept,
the eddy viscosity ji¢ has a scalar value.

In this apprcximation the averaged flow equations become identical in form to
the laminar ones: the transport coefficients (i.e.. viscosity and thermal conductivity)
are simply replaced by the appropriate turbulent transport coefficients which are
much larger than the laminar values because of the additional transport caused by
the turbulent fluctuations. Therefore. we use the equations summarized above even
when the flow is turbulent, but with turbulent contributions added to the laminar
values of the traasport coefficients. The transport coefficients in ARICC are thus

taken to be

fo=pL+ p (2.8)
K = pc,/P, (2.9)

In this study, the dependence of y; on temperature is modeled by a curve fit, pp,
is laminar viscosity, P, is the Prandtl number based on ¢, ¢, is specific heat at

constant volume, y; is a turbulent viscosity.
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The eddy viscosity p. thus defined becomes a property of the flow encountered

and regrires modeline. The hierarchv of turhulence modeling has heen reviewed
extensively in the literature (see Deardorff (1971) and Jones and Lauder (1972)). In
this study, the original zero equation subgrid turbulence model originally used in the
CONCHAS-SPRAY and ARICC code will be validated against incompressible flows.
In addition, a two- equation turbulence model (k — ¢ model) will be incorporated

‘nto the ARICC code. Brief descriptions of these two models are given below.

B. The Subgrid Turbulence Model

The subgrid model was suggested by Deardorff (1971). The local Reynolds
stresses which arice from the averaging process were simulated by an eddy coefficient
with magnitude limited in some way by the size of the averaging domain. When
this domain is considered to be the grid volume of a detailed numerical integration,
the eddy coefficient u; becomes a *subgrid scale” of “SGS” eddy coetficient. The

formulation, which allows g, to be variable in space and time, is formulated as:

fe = %pKDAz(m1 + D%, + D%, +2D%, + 2D%; + 9D2,)% (2.10)
where
Dy, = 2%, Dy = zg—:, Dy = -g
Dp» = Q’yi % Dy = y%ﬂ) 2 = y%(%) (2.11)

where A is a repiesentative grid interval and was taken to be the largest side length
of the regular cell. D;; is the magnitude of the local velocity deformation calculated

on the finite-difference grid, and Kp is the dimensionless constant. Lilly (1967) has
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estimated I'p wi'h approximate knowledge of the Kolmogorov inertial-subrange
constant & He assumed that isotrenie turbulence with such an inertial subrange
was present in the problem being simulated numerically on scales both much greater
and much less then the grid interval A. He also assumed Az = Ay = Az = A, and

took the Reynold; averaging volume to be A3. He found that
Kp =0.23a" % (2.12)

The essential tect niques recommended by Williams (1969) were used independently
by Deardorff (1970) in a steady of turbulent channel low at large Reynolds number.

K p was suggestel to be equal to 0.17.

C. The k — ¢ Turbulence Model

The field of turbulence modeling for single-phase flows is a rapidly expanding
one and many p-oposals have been suggested. The chosen two-equation model is
ased to generate a turbulence length and velocity scale and these will be used to
form a (non-constant) eddy viscosity. An appropriate velocity scale 1s w' = k%. The
k — ¢ model adopted here is the one developed by Jones and Launder (1972). In

their paper, the ~quations was given by

épk 1,0 9 _ 1,0 » Ok
5t J[a (ypuk) + ay(yp vk)| = y{ax(gk e
u Ok . 5
y — 2.1
By(aLJﬁJ )} + G — cppe (2.13)
e , 1 0 10 0
ot _[ qu€)+ a (yp )] y{aw O'(( al_)
. 0 p Oe, (c1€G — Coepe”) (2.14)
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where

) . A . A . T A v - | 7) 7(»]_,. s RN TLEN
G= i) =) = imm 57 F s (T e
2l =) «ayj AR R o ﬁy' *_./m(y ol i

v o

{¢ is then expressed in terms of the turbulent kinetic energy k and the turbulent

energy dissipation rate € via the relation
e = c,,pkz/e (2.15)

Philosophically, the strongest motivation for turning to more complex models
‘s the observation that the algebraic model evaluates the turbulent viscosity only in
terms of local low parameters. yet a turbulence model ought to provide a mechanism
by which upstream effects can ‘nfluence the turbulence structure {and viscosity)
downstream. Further, with the simplest models, ad hoc additions and corrections
are frequently recuired to handle specific effects. and constants need to be changed
to handle differert classes of shear flows. To many investigators. it is appealing to
develop a model eneral enough that specific modifications to the constants are not
require to treat different classes of flows.

Note that the equations (2.13 ~ 2.15) used above are valid only for high
Reynolds number turbulent flows. In order to simulate low Reynolds number tur-
bulent or transition flows including the near wall flows. the high Reynolds number
I: — ¢ model must be modified to incorporate viscous and low Revnolds number
effect. In this thesis. only high Reynolds number k — ¢ model is considered. For
this reason. the wall boundary conditions have to be constructed to avoid sublayer
viscous effects and the wall function approach (to be described in Chapter 4) is

adopted in this study.
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In the equation (2.13) ~ (2.15) the quantities ok, O¢, Cles C2es Cp and ¢p are
model constants. Following Jones and Launder (1972) the vlies need are listing ip

Table 2.1.

Table 2.1 Constant values for & — € model

Ok T Cie Coe Cu CD

1.00 1.30 1.44 1.92 0.09 1.00

Numerous other two-equation models have been suggested, Rubesin (1977)
shows several comparisons between these models for incompressible flow. and overall
they perform quite well. it is difficult to identify the best from the comparisons he
has shown.

The k— ¢ turulence model has enjoyed wide use because of its ability to predict
the mean velocity field and spreading rate of many turbulent shear flows. A recent
review of the applications of this model to a wide range of problems is given in Rodi
(1982). Application of the k — e model to heat and mass transfer problems is given
in Shih (1982).

Despite the enthusiasm which is noted from time to time over two-equation
models, it is perhiaps appropriate to point out again the two major restrictions on
this type of model. First, two-equation models of the type Boussinesq approxi-
mation holds. Ir. algebraic models, u; is a local function whereas in two-equation

models ¢ is a more general and complex function governed by two additional PDE’s.
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If the Boussinesq spproximation fails, then two-equation models would fail. Obvi-
ously. in manv flove the Bovssinesq approximation models reality closely enough
for engineering purposes.

The second shortcoming of two-equation models is the need to make assump-
tions in evaluating the various terms in the model transport equations. especially in
evaluating the thid-order turbulent correlations. This same shortcoming, however,
plagues all higher-order closure attempts. These model equations contain no magic,
they only reflect he best understanding and intuition of the originators. We can
be optimistic, however, that the models can be improved by improved modeling of

these terms.



CHAPTER III NUMERICAL METHODS -
THE ALE-ICE SCHEME

The numerical method used in the ARICC code is the ALE-ICE (Arbitrary
Lagrangian-Eulerian Mesh, Implicit Continuous-fluid Eulerian Technique) scheme
which utilizes the fractional time step concept and solves the governing flow equa-
tions in unstead - forms. The temporal domain was discretized into time steps
At =P 7 (0=0.1,2....).

From #" to 1"t! was called a cycle. There are two phases to be performed in
one cycle. From t" to the first intermediate step was called phase A. From phase
A to next intermediate step was called phase B. Then from phase B. we go to next
step phase C which is equivalent to ¢nt+1 step. Phase A is an explicit Lagrangian
calculation, phase B is an implicit pressure correction and phase C or n+1 step 1s

a rezone calculation.

This separation of a calculational cycle into a Lagrangian phase and a con-
vective flux. or ~ezone. phase originated in the Particle-in-Cell numerical method
(Harlow 1955, A nsden 1966). and has since been used in many hydrodynamic com-
puter codes. Ir the present technique the different phases can be combined in
various ways to suit the requirements of individual problems. For example, in high
speed problems, in which the Courant stability condition is not likely to be violated,

16
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an explicit calculation is acceptable and the phase two iteration may be omitted.
and for an explicit Lagrangian calculation only phasc one is used.

The scileme uses arbitrary Lagrangian-Eulerian Mesh. This type mesh is made
up of arbitrary quadrilateral. The equation was discretized by control volume
or integral-balance approach. which preserves the local conservative properties of
the differential equations. Spatial calculation domain is divided into a number of
nonoverlapping ¢ontrol volumes such that there is one control volume surrounding
each grid point. The differential equation is integrated over each control volume.
The grid vertices may move in an arbitrarily prescribed manner. This capability
includes the Lagiangian and Eulerian description as special cases.

A regular cell is shown in Figure 3.1. The index of the regular cell {ij) were
regarded as hori:ontal and vertical coordinate. The indices (ij) also label the ver-
tices. with the understanding that vertex (ij) is the (logical) lower left corner of cell

(ij). The “center” ({;.y;;) of the cell 1s defined by

1
Ty = 1(11 + Iy + T3 + I4)

1
i = Z(yl +y2 + Y3 + ¥a) (3.1)

In general, the point (zf;,y;;) 1s not the center of mass or volume of cell (1)).
The area o the cell in Figure 3.1 following CONCHAS-SPRAY (1982) and
KIVA-II (1989) s calculated by the algebraic formula.

area = triangle 123 + triangle 134

1
iTR = ;‘)‘(yl(l‘g —r3) + y2(x3 — 4131) + y3(x1 —Z2))
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AFBL = (y1($3—‘t4)+y3($4—I1)+y4(1'1 _$3))

¢

VRS

Ay = ATR+ ABL (3.2)

The volumes corresponding to triangles 123 and 134 may be shown to be

1
vTR:/ ydzdy = 3( +va + 15} ATR
A(123)

1
/BL= [ ydady = glwi+ v +u)ABL (33)
A(134) 3
The total cell volume is then given by
Vii = / ydrdy = VTR + VBL (3.4)
A

i

Momentum c-ll (ij) is centered about vertex (1j), as shown in Figure 3.2. A
momentum cell has four of its corners at the centers of the four associated regular
cells, the other four at the midpoints of the regular cell sides which meet at vertex
(i}). Momentum ‘ell’s area and volume are Al and V7. Those calculations are
similar to the regular cell’s calculation (equation 3.1 ~ 3.4).

If the finite-ifference representation for the equations has the conservative
property, we mus' establish that the discretized version of the divergence theorem
is satisfied. The cifferential equation is integrated over the area of a typical cell or

momentum cell ar.d use divergence theorem to transfer area integral to face integral.

//V-FdA:/F~nds
A 8

We normally che-k this for a control volume consisting of the entire problem do-

main. To do thic the integral on the left is evaluated by summing the difference
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representation of the equation at all grid points. If the difference scheme has the
conservative property, all terms will cancel except those which represent fluxes at
the boundaries. It should be possible to rearrange the remaining terms to obtain
identically a finite- lifference representation of the integral on the right. The result
will be a verification that the mass flux into the control volume equals the mass
flux out. When th- governing equation can be written in divergence form, we can
be guided in this process by employing the Gauss divergence theorem to obtain
the correct matheraatical formulation for the physical law for a control volume. In
practice, the contr»l volume method has a history of leading quickly to expressions
that prove to be niore accurate than other possibilities near boundaries, probably
because the method keeps the discrete nature of the solution method in view at
all times. The distinctive characteristic of the control volume approach is that a
“halance” of some physical quantity is made on the region in the neighborhood of a
grid point. The discrete nature of the problem domain is always taken into account
in the control volume approach which ensures that the physical law is satisfied over
a finite region rataer than only at a point as the mesh is shrunk to zero. It would
appear that difference equations developed by the control volume approach would

almost certainly bave the conservative property.

Spatial differences are performed by integrating the differential term in question
over the area of a typical cell (or momentum cell). If the term is of gradient
or divergence form, its area integral is usually converted into a surface integral
using the divergence theorem. The area integral of a time derivative is related to

the derivative of the integral by means of the Reynolds transport theorem. The
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area and surface integrals are performed under the assumption that the dependent
variables with control volume approach are assumed uniform in each cell and/or on
each face. Velocities are set at vertex and are regarded as uniform in momentum
cell. All quantities zre regarded as uniform with the value at the center of the cell
face. Then, the line integrals over cell face are approximated by sums over the cell

faces as shown in Figure 3.2.

/F . nds ZFa Ny Asq (3.5)

where F,, is the valte of F at the center of cell face «. n, is the outward unit normal
to the cell face, As, is its length, and the faces are numbered in a counterclockwise

order.

naAsy = ly x k = lagi — lazd (3.6)

where 1, is the vestor of length Asy along cell face a in the counterclockwise
direction, k is the unit vector out of the plane, laz,lay are the x, y components of
lo (Figure 3.3).

The velocities are located at vertex, then
uij = u(Tij, Yij)

vij = v(Tij, Yij) (3.7)

where u,v are the x, y components of fluid velocities. Thermodynamics variables
and other scalar variables such as turbulence kinetic energy and energy dissipation

rate are located at cell centers.

Qi; = Q(z35.vi5) (3.8)



where Q@ = p,p, T, [, k, €.

A. Phase A : The Explicit Lagrangian Calculation

The explicit Lagrangian calculation was used in phase A. In this step velocities
are advanced explicitly in time using pressure gradients and body forces computed
from the currently available pressure and mesh coordinates. If viscous, elastic or
other stresses are desired, they may be included at this stage as well. The total
energy of each cell is also advanced in time to account for the work done by the
body forces and other stresses, except those of pressure. Pressure work terms are
included only after the implicit pressure calculation in phase B. This delay permits
time-advanced pressures to be used in computing the work and ensures consistency
with the velocities coming out of phase B. The vertices were assumed to move
locally with the velocities. From this assumption, the convection terms of transport

equations vanished. From continuity equation, we have

M =M= / ypdA = piVi; (3.9)

1)

From the Lagrangian assumption, the vertex position can be calculated by

LA oan n
.1,1']' = ‘I;ij + u,-j At

yih =yl +oly Ot (3.10)

and the volume 1"{;‘ can be calculated by the equations (3.1) ~ (3.4) with all z™’s

and y™’s replacec by 4’s and y’s. The pf‘}, pf} were calculated by

piy = MGV (3.11)
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S}

pA=pi R T (3.12)

The momentur1 equation was discretized by integrating over the momentum
cell area Af}. In momentum cell A7, the velocity is regarded as uniform. but the

density was calculated by the associated four regular cell’s density.

Therefore,

/ ypuijd.A = u,'j/ ypd.A = nguij

ij 1

/ ypvijdA = U,’j/;‘ ypd.A = J\/t,‘jvij (313)

where M; is the mass of momentum cell (ij). The momentum equation in phase

A was discretized by

J\Afufi — ,r\/[n.u?_ N 4 . 8 N w?z
J JAt 1) "y = —y1] Zpg lax+2(y7yyA$+yTysz—T09.A )0+J\Aij y’i
a=1 a=1 i
MIA’UIA — ./\./(?.UTP 4 8
T = Y S pn oy + Y (YT AT+ YT (3.14)
a=1 a=1

where the pl is the pressure of the regular cell in which face lies, the summation
are over the four faces which are orthogonal to the pressure directions. Az and Ay
are the distance of the cell center to the cell face in x direction or y direction.

The diffusion terms summation are over the eight faces of momentum cell (i),
it has been shown in Figure 3.2. For evaluating viscous stresses, the regular cell
was partitioned into four quadrants by the momentum cell faces which meet at the
cell center 0 (Fignre 3.4). These faces are labeled R, T, B, L. Each vertices has two
faces from one rezular cell, and eight faces from four associated regular cells. Faces

B, R are two of “he eight faces of momentum cell centered at vertex 1, faces R, T
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are two of the eight faces of the momentum cell centered at vertex 2 and so on. The

velocities at point ( are defined as the average velocities of the four vertices values.
1
Uy = Z(UI + ug + uz + ug)

1
Vg = Z(vl + v9 + v3 + U4) (315)
The viscous stresses on faces R, T, L, B were described below. First, the partial

derivatives of u, v with respect to x, y in faces R which shown in Figure 3.4 were

calculated by the triangle rule.

du Y20 Y10 — Y10 U20

[‘a—;]R =

Ti10 Y20 — T20 Y10

ov T10 V20 — T20 V10
[5‘ R= (3.16)
Y Tio Y20 — Z20 Yio

where

Ugp = Ug — UbyVab = Va — Vb
Tab = Ta — TbyYab = Ya — Yb
a,b=0,1,2,3,4
and the others faces T, L, B are obtained by the permutations ( R, 1,2 ) — ( T, 3,
4) — ( B, 4,1). The diffusion term is evaluated as the sum of four contributions,
one from each of the regular cell shown in Figure 3.4 contributes to each of the

vertices 1, 2, 3, 4

B. Phase B : Pressure Correction

In phase B, the vertex positions are determined by the equations

B _ ..n B
xij = ‘Tij +uij At
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yB =yl + o] Ot (3.17)

From those vertex positions xﬁ,yg , the cell volume Vlf in phase B can be
calculated by the ecuation (3.1) ~ (3.4). The cell mass is not changed in this step,

because the continuity equation.
ME =M (3.18)
Then the density in this step is decided by
pB = MBIVE = MV = piVi V] (3.19)
Therefore, the pressure can be calculated by
pZ =p5 RT] (3.20)

For isothermal process, we have TB Tf} =T7.
In phase B, the momentum equations was reduced to
B

1 A 4
A j n
M At at = Yy Z(pa
a=1

B L.
MA”—’— =y} Z —pi)l (3.21)

In equation (&.21) the summations are over faces of momentum cell (ij), pa 18
the pressure of the regular cell in which face a lies.

The methodology described above is valid for compressible flows since equation
of state is utilizec. As for the unsteady Navier-Stokes equations, the numerical

difficulty lies in the constraint V-V = 0. In the steady case, this difficulty can
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be surmounted by using the so-called Pseudocompressible method. The method
has been introduced by Chorin (1967). The principle of the method is to consider
the solution of the steady equations (2.1) as the limit when t — oo of the solution
of unsteady equations obtained by associating the unsteady momentum equation
(2.2) with a perturbed divergence equation in order to get a system of equations of
evolution which can be easily solved by standard methods.

The Chorin method is established by first writing a perturbed continuity equa-
tion

Op 2
— V- V=0 .22
5 TP (3.22)

where ¢? is an arbitrary constant. This equation has no physical meaning before the
steady state 8/8t = 0 is reached. So the constraint V - V = 0 is satisfied at conver-
gence only. The method, which consists of solving equation (2.2) and (3.22) can be
called a pseudo-ursteady method because the time ¢ involved has no physical mean-
ing. The parameter ¢? in equation (3.22) must be chosen to ensure convergence,
i.e.. to ensure the existence of a steady numerical solution of the system.

The term “pseudocompressible method” (Chorin 1967) can be derived from the

Navier-Stokes equations for a compressible fluid whose state law would be

p=¢cp

with ¢? = constant. However, possible numerical difficulties can be associated with
the use of a very large value of ¢?, and hence the pseudocompressible method will
likely have the most value in the computation of steady solutions. In this way, it

can be considered a procedure to build a special iterative method for solving the
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steady problem. For incompressible flows, the momentum equations must coupled

with the continuity equation. Continuity equation was discretized by

VB
(p® —P")+P62(“7‘; -1)=0 (3.23)

The equations (3.17) ~ (3.21) for compressible flow or (3.17), (3.21), (3.23)
for incompressible flow are an implicit system of equations for unknown quantities
1:5, yg, ug, vg nd pg». One of the major problems in machine computations is
to find an effective method of solving a system of n simultaneous linear equations,
particularly if n is large. There is. of course. no best method for all problem because
the goodness of a ‘nethod depends to some extent upon the particular system to be
solved.

This implicit system can be solved by a Successive Over Relaxation (SOR)
scheme. We now Hroceed to describe the SOR. Let the iteration index be v, which
will be displayed as a superscript in parentheses. SOR is specified by giving the

prescription for advancing all quantities from iteration v to iteration v + 1. The

vertex positions ere advanced first:

I$;+l) =z;;+ uE;) At

yi,”” =y + ‘vﬁ,-") Ot (3.24)

(v41)  (v+1)
AR

the quantities (z,; . ¥;; ) then determine Vi(j"H) in the usual way. The pressure

change is computed by the relaxation formula for compressible flow

(v)

RT;;
(v+1) (v) (v) i A
p,; =Pi; T Bislpi;” — V(vu+]1)MiJ'] (3.25.a)
L



where

T(V) TA ¢1p§} (V(V+1) Vn)
ij 0T MAC co)h i)

for incompressible flow, the equation changed to

py ™Y =0 = 35l(py - ply) + pc( -l (3.25.0)

and B;; is a relaxation coefficient defined below. Finally, the velocity is updated

according to

A_(v+l) A
MBuT = Mg - Oty ZW“) iz,
+1 nyjn
MEUTY = calM ol — Dty Z(p("“) T, (3.26)

Since equation (3.25) determines the pressure change

6py) = plut — p¥) (3.27)

It is convenicnt to rewrite equation (3.26) in terms of

(v) (v+1) (u
éu” = ul] Uy
s = ol — oY (3.28)

We then obtain

Misul? = — Dty Z&p(")l"
M6l = — Ayl Z spm, (3.29)

Equation (3.29) is more convenient for numerical purposes than equation (3.26),

as it allows one to avoid saving the u{}, v{}.



The iteration :s initialized by setting

0 0 0
5]) - u%a 1(]) - U;‘;v p(z]) = pz] + Ap (330)

where Ap is an estimated change in overall pressure level (defined below), and the

final converged values are given by

i B B : (v) () (v) ()
( zpyt])pz]? z]?vij :ull»ngo( 1;’ ,y,; ’pt_]’ 1; ’ z;) (331)

of course, the limit v — oo is achieved for all practical purposes at some finite
value of v: this velue is determine by a convergence criterion and the iteration is
terminated at thet point. After the iteration has converged. VUB i1s known and
the densities pg are calculated by (3.17). All quantities are updated by its relative

equations.

The relaxaticn coefficient 3;; for compressible flow is given by

0 T

Bi; = w[l — RM[} 5— ” -1 3.32.a)
J [ 6131] i )] ( ;

for incompressible: flow is changed to

9Si;j
3;; = w[=——2]"" 3.32.b
J [api]_ ] ( )
where

Si; = (p1) = ply) + pe’( T 1)
i

where V;; and T}, are here to be considered as function of p;;; these functions are
implicitly determines by equation (3.1), (3.2), (3.23), (3.24), (3.29). The derivative

in equation (3.31) is evaluated numerically by inserting a small pressure perturba-

tion into cell (i,j) and calculating the resulting change in (T3;/V;;) for compressible
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flow or S;; for incorapressible flow. The coefficient w in equation (3.31) is the usual
overrelaxation parameter, which may be varied in the range 0 < w < 2 to accelerate

convergence. Best 1esults are usually obtained with w > 1.

C. Phase C or n+1 Step : Rezone Calculation

In phases A ard B, the vertices were assumed to move with the fluid, based on
the Lagrangian calculation. If the calculation in phase C used Lagrangian technique,
the rezone procedure is not needed. If the Eulerian technique was used, the new
mesh should be rernapped into its old mesh. The vertex positions were determined
by either of the two ways or by other prescribed methods. They were assumed to

move with the fluid (Lagrangian mesh)

+1 _ _B
b=
B

y:}+1 = yl] (3330)

or they were not raove with the fluid (Eulerian mesh)

n+l _ B B

yit =y} — v At (3.33.b)
In Lagrangian technique, phase C is not needed. So in phase C, only the
Eulerian calculation is discussed. From equation (3.33), the volume V, j+1 of phase

C was calculated by equations (3.1) ~ (3.4), the mass was calculated by equation

(3.23) from continuity equation.

8
M2 = ME 4+ e Ve (3.34)
a=1
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where the 8V, is done by geometrically calculating the volume swept out by each

B

recular cell face @5 it moves fram ifs Lagrangian nosition (determined by the r7

n+1 n+1
0o Vi

yg) to its final position (determined by the x ). the guantities in [p] are
chosen from the ¢ V,, located. The relationships are shown in Figure 3.5.

Let &V, be the signed volume associated with the quadrilateral having swept by
two opposing sides cell face a from phase B to phase n+1. This volume 1s evaluated

by equations (3.1) ~ (3.4) and the algebraic sign of 817, can be decided.

The density in n+1 phase was decided by

n+1 __ n+1 rn+1 =
Pl = MY (3.35)

Similarly, the momentum equation was calculated by

8
.\/i?].JrlzL'l-*'l = ;\/IguB + Z[pu]g 0Va

1j 1]
a=1
R
MEFLE BB > [pvlf eV (3.36)
a=1

where 8V, is the momentum cell similar to the 6V, for the regular cells. The a’s in
sV, is the « face of the regular cell. a = 1, 2. 3. 4. The o's in 0V, is the a face of
the momentum -ells. o = 1. 2.3. 4.5, 6, 7. 8.

The cell quentities [p)2. [pu]2, [pv]B were determined by the donor cell scheme.
Let the interest-d regular cell a be called cell 1 and the neighboring cell which 1s
connected to th- cell face a be called cell 2. The cell quantities were evaluated as
an upwind-weigited average of the quantity of cell face 1 and cell face 2. First, the

upwind cell or conor cell should be decided by the sign of §V : if 8V > 0. the cell 2
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is the upwind or lonor cell which cell 1 1s the downwind or acceptor cell. and vice

verse.

Therefore, tt ose quantities was defined

QB if &Va>0

B __
Qi = {Q? if 8V, <0
5 i
s QF if Va>0
Qv ={op i sV, <0 (3.37)

where Q = p, pu. pv, d is referred to the donor cell quantity and a is the acceptor

cell quantity. In p]Z, [pu]8, [pv]2, a partial donor cell scheme was described.

1 1
28 = SQF (1 + a0+ 3C) + SQ2(1 = ag = HC) (3.38)

=

where o and 3o are adjustable coefficients. (0 < ag + 3y < 1) and

C=2 (3.39)

where V7.V, is t1e area of cell 1, cell 2.

In equation (3.38), when ap = 0 and 8y = 0, this scheme represents the cen-
tered differencing approximation for the convection term. which is unconditionally
unstable. If ap = 1 and 3y = 0 , this scheme is the donor cell or upwind differencing
scheme. It is stable, but too diffusive for most calculations. If oy = 0 and 3y =
1. the scheme is an interpolated donor cell scheme. A weighted factor which is an
average of the c-ntered and the donor cell differencing is added. which makes this
scheme more stzble. This interpolation scheme is also less diffusive than the donor

cell differencing by a factor C.
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Figure 3. 4 Regular Cell used for Differencing Viscous Stress
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CHAPTER IV IMPLEMENTATION OF TURBULENCE
MODELS IN THE ALE-ICE SCHEME

The implementations of the two turbulence models described in Chapter 2 as

well as the appropriate boundary conditions will be described in this Chapter.

A. Subgrid Scale Eddy Viscosity

The eddy viscosity p; is a cell center variable and the velocity gradients in
equation (2.8) ezre evaluated for each of the two triangles into which the cell is

divided (Figure 3.1) using the triangle rule:

0¢ Y23 913 — Y13 Q23
(a—)TR =
T T13 Y23 — T23 113
J¢ Ti3 P23 —T23 @
(a_)TR _ %13 923 23 913 (4.1)
y T3 Y23 — T23 Y13

where ¢ = u,v, >r w and
¢ab = d)a - (pb Ll

Tab = Tag — Th

Yab = Ya — Yb
and
a.b=1,2,3,4
The derivatives of (8¢/8z)py, and (8¢/8y)p 1 are obtained by the permutation
(TR, 1, 2, 3) — (BL, 1, 3, 4). From those derivatives the quantities ij of equation

37
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(2.9) was computed by
.D?J,— = maxl{ D, )grp, (D, )“};,] (4.2)

Those results were substituted to equation (2.8), and the turbulent viscosity

(¢ is obtained.

B. k- Turbulence Model

The k — ¢ model requires solving two extra transport equations. In phase A,

the Lagrangian formulation excluding the convection terms was implemented

M’AkA M™E" : u u Ok
g v 5; g et

G™ — cpp"e”

A7 =)=+ (y bat

MAer — M™e® :i{( p | Oe ﬁ)& n
W e T e Ty

(c1e€"G™ — cacp™ €™ )/K™ (4.3)

In phase C, the Donor cell scheme was used to calculated the convection terms.

C. Wall Functions

The accurate solution of the boundary-layer equations for turbulent Hows using
nodels which evaluate the turbulent viscosity at all points within the flow requires
that grid points be located within the viscous sublayer, y* < 4.0 for incompressible
flow. and perheps y* < 1.0 or 2.0 for flows in which a solution to the energy
equation is also being obtained, where y* = yu/v. The use of equal grid spacing

for the transverse coordinate would require several thousand grid points across
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the boundary laye: for a typical calculation at moderate Reynolds numbers. This
at least provides motivation for considering ways to reduce the number of grid
pomnts required to span the boundary layer. the techniques which have been used
successfully fall into three categories, use of wall functions, unequal grid spacing,
and coordinate transformations. The wall function will be disscussed in this section.
For many turbuleat wall boundary layers the inner portion of the flow appears to
have a “universal = character captured by the logarithmic “law of the wall”. The
inner region is a zone in which convective transport is relatively umimportment.
The law of the v:all can be roughly thought of as a solution to the boundary-
layer momentum equation using Prandtl’s mixing-length turbulence model when
convective and p-essure gradient terms are unimportment. In this approach, the
law of the wall is usually assumed to be valid in the range 30 < y* < 200 and the
first computational point away from wall is located in this interval. The law of the

wall equation was given by the logarithm form

2= lln(
K

U

YU«

v

)+ B (4.4)

where u is the tangential component of the fluid velocity at a perpendicular distance
y from the wall, » is the molecular kinematic viscosity, s is von karman constant(in
this study, the « is set to 0.4 ), Bis a constant that depends on wall roughness (we
set B = 5.5 (smooth-wall)), and u, is the shear speed, which is related to the wall
shear stress 7, ¢nd the fluid density p by 7w = pul.

In this equetion, the u, of equation (4.4) appears in both sides of the equation,

which one would ordinarily have to solve iteratively. To avoid the inconvenience
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this would entail we use instead an approximation obtained by replacing u. in the
argumert of the logarithm by 1/7-law value u.. The 1/7-law’s equation (Hinze

1975) is given by
A (4.5)
v

Ua
multiplied yu,/(3.3v) to both sides of equation (4.5) and took power 7/8. then the

equation change to below

YU«

14

— 0.15(£)7/8 (4.6)
v
substitute (4.6) into the right side of equation (4.4), the new equation was obtained

075 +219 In( LY (4.7)
1

U o

From this e-juation, it can be explicitly solved for u,. The wall stress 1s then
given by 7, = pul. If yu/v (a Reynold’s number based on y ) is too small, the
interested point lies in the laminar sublayer rather than the law-of-wall region. In

this case, the laininar sublayer equation was given

2= (B (4.8)

Uy v

The transition values between equation (4.7) and equation (4.8) is made at the
point where the:- predicted the same u,, which is yu/v = 130.3.

These equa‘ion are implemented numerically in the following way. Consider a
typical cell adjacent to the wall, as shown in Figure 4.1. The shear stress 7, for

this cell is evaluated by setting

1
u=flur+ wr)? + (vp + ve)? + (wr + wr)?)E
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y = =(hr + hr) (4.9)

b

and v = g, /p. where pis the density in the cell in question. and g 18 evaluated at
the temperature o’ the cell. Equation (4.7) and (4.8) incorporate two simplifying
assumptions: (1) the normal velocity at points L and R is negligible, so that the
tangential component may be replaced by the magnitude of the velocity, and (2) the
lines connecting points L and R to their neighbors on the wall are approximately
perpendicular to the wall. These values for u, y, and v determine u, and hence 7y
as already describad.

With , thus determined. the product oAt gives the associated change in
fAuid momentum cccurring on a time step (A 1s the wall area of the cell in question).
Half of this change is apportioned to vertex L and the other half to vertex R. These
changes are effect-d by multiplying all velocity components at each of these vertices
by a single factor for that vertex, so that the directions of the velocity vectors do not

change. (This procedure again relies on assumption (1) of the previous paragraph.)

These factors are given by

1 T ANt
Fro=1-35 . 2 233
~ML(uL+vL+wL)2
1 Tw AN
FR:].—.-)—‘ . 5 . (4.10)
-,M'R(uR—%vR#—wRP

where M; and [ [g are the vertex masses. If either of these factors comes out less
than 0.3, It is replaced by 0.3 to prevent the velocities from changing by too large a
factor on a singl> time step. It should be noted that these changes to the velocities

at points L and R are only those due to the particular cell in question. A similar
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change to the velocity at L will result from the wall cell to the left, and to the

velocity at R from the wall cell on the right.

The wall fur ction set for k 1s

4.11
N (4.11)

and for € 1s

(4.12)
Ky

and the turbulert viscosity y¢ was calculated by equation (2.11).

D. Initial Conditions

At the inle: of the calculation domain, all dependent variables have to be
specified. The k profile may be estimated from the measurements. In general, k is
specified as a percentage of the inlet mean square velocity.

kin = 0.003 x u?, (4.13)

The inlet profile for € has to be assumed, since no measurements are available.

It is specified as

€in = k2l /(0.03D/2) (4.14)

where D is characteristic length at the inlet and ¢, = 0.09.

From this two initial values, the turbulent viscosity p; can be calculated by the

equation (2.11).
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CHAPTER V RESULTS AND DISCUSSION

For the purpose of code validation and testing, several benchmark problems
with available anzlytical and experimental data have been chosen. The first case is
the Burger’s equation with complex geometries and boundaries. Next. the laminar
and turbulent pipe flows are calculated. Finally, a confined coaxial jet flow relevant

to combustor des gn is calculated.

A. Solution Of Burger’s Equation With

Complex Geometries And Boundaries

The purpose of this problem is to test the capability of the ALE-ICE scheme for
handling comple < geometries and boundaries. The Burger’s equation with mixed
Neumann and Dirchlet boundaries are chosen to test the ALE-ICE scheme.

The Burger s equations for the unsteady incompressible flow may be written

as
8“ _a_u + ?_u. (_8_22 ,az_u) +f
ot "a oy ‘otz | 0? z
ov v ov 9%y  O*v
5 ua$+v5§—v(62 52y)+fy (5.1)
where
fa= : (2% + 22y — L)1 3aty? -2y
14t - 1+t -
f, = ——(y® + 22y - Ly ety — e
VT 14+t 1+t -

44
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with the Neumann boundary conditions and the Dirchlet boundary conditions spec-

ified according to Figure 5.1. The Neumann boundary conditions are snecified:
Ju
— =2z
Jz v
9]
O _
Oy
z
7]
A Y (5.2)
dy

The solutior. will be compared with the exact solution
W= ——+2Iy

: (5.3)

First, grid independence studies were carried out by using three grids : 4 X
10,8 x 20 and 16 x 40. The case considered was v =1 and times step was set rather
small to reduce any instability. The total r.m.s. errors, which was defined as sum

of the pointwise r.m.s. error

el = (3w — @)/ Y ui} /] (5.4)

were plotted vs time on Figure 5.2. Both 8 x 20 and 16 x 40 reaches asymp-
totic values of 7%, and since only the long- time behaviors are compared the rest
of the results ae shown using the 8 x 20 grid. Effect of viscosity on the calcu-
lated results is shown on Figure 5.3. As expected, as Reynolds number increases

(v decreases), convection term dominates and due to the upwind scheme for the
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convection term approximation, the total r.m.s. errors increases. Typical results in
terms of poiutwise errors are shown in Figure 5.4 and Table 5.1. For areas closed
to non-orthogonal grids and Neumann’s B.C.’s. there appear to have less accurate
results (Lee et al. 1989). This points to the further development in terms of flux
calculations in the ALE-ICE method for irregular grids and Neumann Boundary

condition implementations.

B. Laminar Pipe Flow

The second testing case is a laminar pipe flow. The pseudocompressibility
method describec in Chapter 3 was used for the incompressible flow case. This
method has also heen used in Rogers et al. (1987), Liang et al. (1985) and Nichols
et al. (1980) for incompressible flows.

The analytical solutions of laminar pipe flows were given in Bird et al. (1960).
The calculated results will be compared with the analytical solution. The velocity

distribution in the fully developed region was given by

- I
U, =204 [1- (3

)?] (5.5)
where U, is the ongitudinal velocity, Us 1s the bulk velocity and R is the radius of
the pipe.

The Reynolds number (Re = DUy /Jv) of 1,000 was carried out for laminar flows
i which D is tte pipe diameter and v is the viscosity. In Figure 5.3, 5.6 different
3 values (pc?) were tried to find the optimal performance. For 3 around 5 the

solutions obtained were optimal. Next, grid independence studies were carried out

by using 11 x &1, 21 x 81 and 31 x 81 grids. In Figure 5.7, 5.8 fully developed
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and developing profiles show that 21 x 81 and 31 x 81 grids converged to the same
solutions and compare well with the analytical solution velocity within about .8 %
errors. The calculition was done by assuming the plug profile at the pipe inlet and
the calculation dcmain was 60 in pipe diameter. Fully developed (Figure 5.9) and
developing (Figur= 5.10) data compared to analytical solution velocity is only .75 %
errors in 21 x 81 case. In this section, each case runs about 17,000 cycles and each
cycle uses .7 second on CRAY-XMP. This simulation will give some suggestion to
the ALE-ICE scheme’s future works and will help the next test case for turbulent

flows.

C. Turbulent Pipe Flow

Most turbulsnce models have been tested and/or developed using fully devel-
oped pipe flow conditions, and this testing will be made in this study. As recom-
mended by Martinuzzi and Pollard (1989). the calculated results are compared to
one another, and, for the sake of placing the calculations in perspective. they are
compared to various data sets that appear in the literature. A single data set has
not been used because, in the authors’ opinion, a reliable, well-documented data
set does not exist due to back of providing detailed inlet conditions. As a results,
the data sets o° Richman and Azad (1973), Lawn (1971) and Nikuradse (1932)
will be compared with the calculation results. From Martinuzzi and Pollard (1989)

recommendation, the Re =10,000 and Re =100.000 will be used in this study.

Calculatior: grids 21 x 81, 31 x 81 for Re =10,000 and 51 x 31. 61 x 81l and 71 x

81 for Re =100.000 were used by grid independence study. The plug flow condition
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was used at the ialet. The 3 value for 21 x 81 and 31 x 81 was 500 and for 51 x
81, 61 x 81 and "1 x 81 grids was 5 000. The calculation domain was 80 in the
pipe diameter. Einpirical relationships are used to assign entrance values to k and
e; that is, k = 0.003 U} for Re =10.000, k = 0.03 U? for Re = 100,000 and € =
(C,k?/0.03/R).

In Figure 5.11, the fully developing axial velocity profiles normalized by the in-
let velocity, at Re =10,000, was presented. Figure 5.12, the fully developed velocity
profiles are compared with those data of Nikuradse. The fully developed profiles
at Re =10,000 for u™ = u/u, vs y* is shown in Figure 5.13. the slopes are gener-
ally well reprodu-ed. but the absolute values of the calculations tend to overpredict
the data of Nikuradse (1932). The developing velocity profiles for Re =100,000
are shown in Figure 5.14 with the data of Richman and Azad (1973). The differ-
ences are negligisle. The fully developed axial velocity profiles at Figure 5.15, at
Re =100.000. are compared with those data of Richman and Azad (1973). The
agreement between experimental data and calculations is poorer close to the wall
boundary. This can be further seen from Figure 5.16 where the mean velocity profile
is plotted using "he wall coordinate. Using the 1/7-th law wall function forced the
first grid calculation results to match the logarithm wall. Due to the poor turbu-
lence model capability for strong shear flows. the predictions deviate significantly
away from the wall.

The distrib ition of the turbulence kinetic energy in the fully developed region

for Reynolds nu:nber of 10,000 1s overpredicted (Figure 5.17) and is underpredicted

(Figure 5.18) for Re =100,000 as compared to Lawn’s experimented data.
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It should be noted that the 1/7-th law wall function used in there calculations

is only valid for filly developed turbulent pipe flows. This accumption s incapahle
of modeling developing regions and separated regions as will be seen in the next
test case. The use of the 1/7-th law wall function is probably responsible for the
poor performanc: of the k — e model toward the wall regions as implemented in this

study.

D. The Coaxial Jet Flow

The Space Shuttle Main Engine (SSME) high pressure fuel preburner consists
of 264 coaxial injector elements injecting gaseous hydrogen and liquid oxygen into
a large cylindrical chamber. The ARICC code was originally developed to simulate
these types of flowfield. The outer wall is a free-slip boundary that corresponds
to the imaginary symmetry surfaces of a streamtube whose diameter is determined
based on the average cross-sectional area available to each injector element (Liang
et al. 1986a). This ability is deemed necessary for the simulation of the confined
coaxial jet flows. Owen’s turbulent recirculating jet flows (1976) will be tested in

this study.

Owen’s turbulent recirculating jet flows (1976) is a complex one consisting of
large recirculating zones. It is a confined coaxial jet flow with high velocity ratio
between annular jet and central jet, and a central toroidal recirculation zone is
formed due to the imbalance of the mass flow between the central and annular jets.
The sudden expansion of annular jet results in a severe adverse pressure gradient.

When this pressure gradient is too strong for the low momentum central jet, a
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central toroidal recirculation zone results in addition to the corner recirculation
zone.

In an effort ‘o provide such data and also to understand the nature of the
flow in a coaxial jet flow configuration of interest to combustor designers, Owen
carried out detailed turbulence measurements using LDA. The Owen’s experimental
configuration (reproduced in Figure 5.19) consist of a 2.5 in (6.35 cm) central jet
surrounded by a 3.5 in (8.89 cm) annular jet. The jets discharge into a 3 in (12.7
cm) diameter chamber 48 in (121.9 cm) long. The outer and inner peak velocities
were 96.0 (29.26) and 8.0 (2.44) fps (m/sec) corresponding to Reynolds numbers
hased on respect:ve jet diameters of 1.5 and 0.08 x 10°. Inflow profiles were not
reported.

Sturgess. et al. (1983), Syed and Sturgess (1980), Novick. et al. (1979) pre-
dicted the confined coaxial jet flow corresponding to the experimental conditions of
Owen’s (1976) w:th k — e turbulence model. None of these predictions produced the
shape, size, and location of the important central toroidal recirculation zone cor-
rectly (Nallasamv 1987). The length of the central recirculating zone was severely
underpredicted by about 40 percent. As concluded by Nallasamy (1987), the corner
and central recirculation zones are very sensitive to the central jet exit geometry.

Computaticns for this case were made using ARICC code with 21 x 81 and 31
« 81 unstructured grids, shown in Figure 5.20. The calculation domain was 12 times
of the diameter of the chamber and extended 4 inches for inlet flow. The inner jet is
2.5 inches, the cuter jet is 3.5 inches and the chamber is 5.0 inches. The Reynolds

number for inner jet is 8000 and for outer jet is 15,000; Re = DU,/v, where D
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is the jet correspondence diameter and U, is the bulk velocity for correspondence
iets. v is the kin-matic visccsity. The inlet velnes for k is 0.003x17? and for € is
Cuk%/0.0B/R. C>mputations were made with the subgrid and the k — e model.

Figure 5.21 shows the comparisons of the centerline mean axial velocity profiles
and the measure] values. The k — e model prediction is good up to 2.0 D and the
subgrid model or:ly within 0.5 D. Beyond those the predicted value are smaller than
the measured ore. The mean velocity profiles predicted by the k& — ¢ model and
subgrid model ccmpared to the measured values are illustrated in Figure 5.22, 5.23.
The predicted mean velocity profiles of k — e model are in good agreement with the
data, but subgrid model are not. Between x/D=0.25 and x/D=1.8, some differences
between the data and the predictions are seen. However, the overall predictions of
k — e model are in good agreement with data in the recirculation zone. The k — ¢
model predictions for r.m.s. velocity Auctuation and the data are shown in Figure
5.24. The prediction is very close to the data. Figure 5.25 shows the streamline
patterns, subgri-1 model center recirculating zone is larger than that of k —e model’s.
The k — ¢ model shows a better representation of the experimental data. For corner
recirculating zones, k — € model also shows good predictions

Figure 5.2€ shows the transient behavior of ARICC code. As seen from those
profiles, they are not real transient results. Equation 3.22 indicated that the con-
tinuity equation can only be satisfied steady state was reached From this point of
view. the transient results are not time-accurate and only represent intermediate

transient to the final steady state results.
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Table 5. 1 Values for Figure 5.4

predict exact error rms

A 1 v v
(1) 1. 1.22 1.96 1.21 4.98-5 | 9.18E-5
(2) 1. 1.39 1.58 1.39 1.12E-4 | 2.73E-5
(3) 1.108 1.32 1.083 1.33 1.85E-4 | 9.06E-5
(%) 1. 2.71 1.33 2.83 6.7E-5 9.6E-4
(5) 6. 13.15 7.58 14.33 4.6E-3 8.9E-3
(6) 9. 17.90 10.80 19.30 6.4E-3 | 1.06E-2
(7 6. 17.09 6.69 18.40 3.4E-3 9.9E-3
(8) 2. 12.27 3.08 12.80 1.24E-3 | 4.24E-3
(9) 1. 10.66 1.96 10.95 7.61E-4 | 2.28E-3
(10) 5. 25.54 5.83 25.833 6.2E-4 | 2.18E-3
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CHAPTER VI CONCLUSION

In this study, the ALE-ICE scheme has been applied to four different case, the
Burger’s equations were solved on a complex geometries with different boundary
conditions. Fully Navier-Stokes equations were solved in other cases. The pseudo-
compressibility me-hod was used to solve incompressible fluid flow problems. Both
laminar and turbuient pipe flows were tested and compared with the analytical so-
lution (Bird et al. 1960) and experimental data and other predictions (Martinuzzi
et al. 1989). Last:y, a confined coaxial jets flow with larger momentum difference
between inner jet and annular Jet were calculated. Owen’s experimental data was

chosen for comparison.

Results obtained from solutions of the Burger’s equation by unstructured grid
showed that the total r.m.s. errors, defined by equation (5.4), reached asymptotic
values of 7%. Effects of viscosity on the calculated results were studied. As ex-
pected, as Reyno ds numbers increase (v decrease), convection term dominates and
the total r.m.s. errors increase. For areas closed to non-orthogonal grids and Neu-
mann B.C.. ther: appear to have less accurate results. This points to the further
development in serms of flux calculations in the ALE-ICE method for irregular
grids and Neumann Boundary condition implementations. Results from laminar
pipe flow showed good agreement with the analytical solution (Bird et al. 1960).
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From turbulent pip: flows results. the calculations using the k — ¢ model showed
good predictions excent the near wall region. the discrepancies were traced to the
usage of the 1/ 7th law wall function in which the fully developed assumptions were
used. For the confined coaxial jet case, the subgrid model can not matched Owen’s
experimental data 1976). on the other hand, the k — e model gave the closer pre-
dictions compared to the experimental data. For these tests. the adiabatic sound
speed factor, 3 = pc?, for the pseudocompressible continuity equation can not be
obtained easily. The number of 3 suggested by Nichols et al. (1980), Anderson et
al. (1984), Soh (1987) and Rogers (1987) could not be used in ARICC due to the
different numerical method. Liang (1985) suggested that 3 could be any suitably
large number to convert the small volume changes into appropriately large pressure
changes. However, the 3's being used in laminar pipe flows were found to be dif-
ferent from those of the turbulent pipe flows. Also, the 3 value used in the subgrid
model calculatiors was different with those used in the k — € model calculations.
It is concluded that there i1s no specific 3 that can be used in any cases. Trial
and error has to be executed for each different cases. From this point of view, the

pseudocompressibility method is more difficult for general fluid flow simulations.

From the results of confined coaxial jet calculations (Figure 5.27), the transient
behaviors of the pseudocompressibility method in the ARICC code were not time-
accurate. Those profiles look like a temporary acoustic waves pushing through the
calculation domain. It is similar to the compressible flows calculations. Therefore,
the ARICC coce 1s not capable of time-accurate predictions of the liquid jet in

two-phase confined coaxial jet simulations. In this regard, a subiteration scheme
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can be incorporated 1n pseudotime to satisfy the continuity equation at each time
step as done recentl bv Rogers aud Kwak (1990).

From the cases tested in this study, it is aiso concluded that the ARICC code
using the pointwise SOR solver is not efficient for fine grid calculations. A more ef-
ficient solver such a:s the conjugate gradient method should be implemented for the
future usage. As for the turbulence models, the more elaborated k — e model gener-
ally gave more satisfactory predictions In the cases tested compared to the subgrid
model. The implementation of the 1/7th law wall function for the near wall velocity
profiles was found "o be inaccurate for developing flows. Further improvements on

the near wall treatments of turbulence models are definitely needed.
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